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“Oxidative stress” as a concept in redox biology and medicine has been formulated in 1985; at the be-
ginning of 2015, approx. 138,000 PubMed entries show for this term. This concept has its merits and its
pitfalls. Among the merits is the notion, elicited by the combined two terms of (i) aerobic metabolism as
a steady-state redox balance and (ii) the associated potential strains in the balance as denoted by the
term, stress, evoking biological stress responses. Current research on molecular redox switches gov-
erning oxidative stress responses is in full bloom. The fundamental importance of linking redox shifts to
phosphorylation/dephosphorylation signaling is being more fully appreciated, thanks to major advances
in methodology. Among the pitfalls is the fact that the underlying molecular details are to be worked out
in each particular case, which is bvious for a global concept, but which is sometimes overlooked. This can
lead to indiscriminate use of the term, oxidative stress, without clear relation to redox chemistry. The
major role in antioxidant defense is fulfilled by antioxidant enzymes, not by small-molecule antioxidant
compounds. The field of oxidative stress research embraces chemistry, biochemistry, cell biology, phy-
siology and pathophysiology, all the way to medicine and health and disease research.
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The concept of oxidative stress has been introduced for re-
search in redox biology and medicine in 1985, now 30 years ago, in
an introductory chapter 1 in a book entitled ‘Oxidative Stress’ [2].
A concurrent comprehensive review entitled ‘Biochemistry of
Oxidative Stress’ [3] presented the knowledge on pro-oxidants and
antioxidants and their endogenous and exogenous sources and
metabolic sinks. Since then, Redox Biology as a research area has
found fulminant development in a wide range of disciplines,
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medicine.

A noteworthy insight, early on, was the perception that oxi-
dation-reduction (redox) reactions in living cells are utilized in
fundamental processes of redox regulation, collectively termed
‘redox signaling’ and ‘redox control’. A book ‘Antioxidant and Re-
dox Regulation of Genes’ highlighted that development at an early
stage [4]. Since then, an overwhelming and fascinating area of
research has flourished, under the name of Redox Biology [5,6].
The concept of oxidative stress was updated to include the role of
redox signaling [7], and there were efforts of redefining oxidative
stress [8,9].
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These developments were mirrored by the appearance of
monographs, book series and the establishment of new research
journals. Many volumes were published in Methods in Enzymology.
An impressive number of new journals sprang up, Free Radical
Research (initially Free Radical Research Communications), Free Ra-
dicals in Biology and Medicine, Redox Reports, Antioxidant Redox
Signaling, and most recently Redox Biology.

Useful as the term ‘oxidative stress’ may be in research, there
has been an inflationary development in research circles and more
so in the medical field and, even more than that, in public usage
outside scientific endeavors (I would call it ‘over-stressing’ the
term). This led to a dilution of the meaning, to overuse and even
misuse. Cautionary words were published [10] and even explicit
criticism was voiced [11,12]. “Over time, the mechanistic basis of
the concept was largely forgotten and instead of the oxidative
stress hypothesis becoming more precise in terms of molecular
targets and mechanism, it became diffuse and nonspecific” [12]. In
fact, an ‘oxidative stress hypothesis’ has not been formulated up to
now. If anything, there were implicit deductions: for example, that
because of the redox balance concept any single compound, e.g. a
small-molecule redox-active vitamin, could alter the totality of the
system. Such a view overlooks counterregulation and re-
dundancies in the redox network. There is specificity inherent in
the strategies of antioxidant defense [13]. Obviously, a general
term describing a global condition cannot be meant to depict
specific spatiotemporal chemical relationships in detail and in
specific cells or organ conditions. Rather, it entails these, and di-
rected effort is warranted to unravel the exact chemical and
physical conditions and their significance in each case.

Given the enormous variety and range of pro-oxidant and an-
tioxidant enzymes and compounds, attempts were made to clas-
sify subforms of oxidative stress [7] and to conceptually introduce
intensity scales ranging from physiological oxidative stress to ex-
cessive and toxic oxidative burden [14], as indicated in Table 1.
There is ample evidence for the role of oxidation products of DNA,
RNA, carbohydrates, proteins and lipids.

What are the merits and pitfalls of ‘oxidative stress’ today?

A comprehensive treatment of this question is to be deferred to
an in-depth treatment (in preparation). However, for the purpose

Table 1
Oxidative stress: definition, specific forms, classification according to intensity.

Category Term Reference

Definition, “A disturbance in the prooxidant-antioxidant [1]
original balance in favor of the former”

Definition, “An imbalance between oxidants and anti- [7]
updated oxidants in favor of the oxidants, leading to a

disruption of redox signaling and control and/or
molecular damage”
Nutritional oxidative stress [7]
Dietary oxidative stress
Postprandial oxidative stress
Physiological oxidative stress
Photooxidative stress
Ultraviolet (UV-A, UV-B)
Infrared-A
Radiation-induced oxidative stress
Nitrosative stress
Reductive stress
Oxidant stress, Pro-oxidant stress
Oxidative stress status (OSS)
Basal oxidative stress [14]
Low intensity oxidative stress
Intermediate intensity oxidative stress
High intensity oxidative stress

Specific form

Related terms

Classification

of the present Commentary it may suffice to collect a few
thoughts: from its very nature, it is a challenge to combine the
basic chemical notion of oxidation-reduction, including electron
transfer, free radicals, oxygen metabolites (such as the superoxide
anion radical, hydrogen peroxide, hydroxyl radical, electronically
excited states such as singlet molecular oxygen, as well as the
nitric oxide radical and peroxynitrite) with a biological concept,
that of stress, first introduced by Selye in his research of adaptive
responses [15,16]. The two words ‘oxidative’ and ‘stress’ elicit a
notion which, in a nutshell, focuses on an important sector of
fundamental processes in biology. This is a merit.

Pitfalls are close-by: in research, simply to talk of ‘exposing
cells or organisms to oxidative stress’ should clearly be dis-
couraged. Instead, the exact molecular condition employed to
change the redox balance of a given system is what is important;
for example, in an experimental study cells were exposed to hy-
drogen peroxide, not to oxidative stress. Such considerations are
even more appropriate in applications in the medical world. Quite
often, redox components which are thought to be centrally im-
portant in disease processes are flatly denoted as oxidative stress;
this can still be found in numerous schemes in the current bio-
medical literature. The underlying biochemically rigorous foun-
dation may often be missing. Constructive criticism in this sense
has been voiced repeatedly [11,12,17]. A related pitfall in this sense
is the use of the term ROS, which stands for reactive oxygen
species (the individual chemical reactants which were named in
the preceding paragraph); whenever the specific chemical entity
of the oxidant is known, that oxidant should be mentioned and
discussed, not the generic ‘ROS’.

This ‘one-size-fits-all’ mentality pervades also into the analy-
tics: measuring so-called ‘total antioxidant capacity (TAC)' in a
blood plasma sample will not give useful information on the state
of the organism, and should be discouraged [18]. Rather, individual
antioxidant enzyme activities and patterns of antioxidant mole-
cules need to be assessed.

In view of the knowledge that the major burden of antioxidant
defense is shouldered by antioxidant enzymes [13], it seems
puzzling—in hindsight—that large human clinical studies based on
one or two low-molecular-weight antioxidant compounds were
undertaken.

3. What is attractive about ‘oxidative stress’?
3.1. Molecular redox switches

What seems to be attractive about the term is the implicit
notion of adaptation, coming from the general association of stress
with stress response. This goes back to Selye's concept of stress as
the ‘general adaptation syndrome’ [19]. The enormously produc-
tive field of molecular switches was opened by the discovery of
phosphorylation/dephosphorylation, serving a mechanism in
molecular signaling [20]. The role of redox switches came into focus
more recently, foremost the dynamic role of cysteines in proteins,
opening the field of the redox proteome, currently flourishing
because of advances in mass spectrometric and imaging metho-
dology [21-24]. A bridge between phosphorylation/depho-
sphorylation and protein cysteine reduction/oxidation is given by
the redox sensitivity of critical cysteinyl residues in protein
phosphatases, opening the molecular pathway for signaling cas-
cades as fundamental processes throughout biology.

What was particularly exciting to many researchers was the
discovery of master switch systems [25], prominent examples
being OxyR in bacteria [26] and NFkB [27] and Nrf2/Keap1 [28] in
higher organisms. That batteries of enzyme activities are mustered
by activation of gene transcription through a ‘simple’ redox signal
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is still an exciting strategy. Much of current effort in redox biology
is addressed towards these response systems. Obviously, medical
and pharmacological intervention attempts are a consequence.

Outlook

Current interest into the linkage of oxidative stress to in-
flammation and inflammatory responses is adding a new per-
spective. For example, inflammatory macrophages release glu-
tathionylated peroxiredoxin-2, which then acts as a ‘danger signal’
to trigger the production of tumor necrosis factor-alpha [29]. The
orchestrated responses to danger signals related to damage-asso-
ciated molecular patterns (DAMPs) include relations to oxidative
stress [30]. Under oxidative stress conditions, a protein targeting
factor, Get3 in yeast (mammalian TRC40) functions as an ATP-in-
dependent chaperone [31]. More detailed molecular under-
standing will also deepen the translational impact into biology and
medicine; as mentioned above, these aspects are beyond this
Commentary and will be treated elsewhere. However, it might be
mentioned, for example, that viral and bacterial infections are
often associated with deficiencies in micronutrients, including the
essential trace element, selenium, the redox-active moiety in se-
lenoproteins. Selenium status may affect the function of cells in
both adaptive and innate immunity [32]. Major diseases, now even
diabetes Type 2, are being considered as ‘redox disease’ [33].

Molecular insight will enhance the thrust of the concept of
oxidative stress, which is intimately linked to cellular energy
balance. Thus, the subcellular compartmentation of redox pro-
cesses and redox components is being studied at a new level, in
mammalian cells [34] as well as in phototrophic organisms [35].
New insight from spatiotemporal organization of hydrogen per-
oxide metabolism [36] complements the longstanding interest in
hydroperoxide metabolism in mammalian organs and its re-
lationship to bioenergetics [37].

The following quote attributed to Hans Selye [38] might well
apply to the concept of oxidative stress: “If only stress could be
seen, isolated and measured, I am sure we could enormously
lengthen the average human life span”.
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